
1. Introduction
Most of the world's megacities are in the coastal zone (Brown et al., 2013), and nearly 50% of the US popula-
tion lives in coastal counties (Crossett et  al., 2004), facing urban environmental challenges that occur within 
the complex coastal atmospheric planetary boundary layer (PBL). While the definitions of the PBL and the 
PBL height/depth (PBLH) vary depending on scientific application (e.g., gradients in temperature/atmospheric 
stability, composition, or turbulence), we generally refer to the PBL as the lowest layer of the atmosphere that is 
directly affected by heat and moisture fluxes and friction from the Earth's surface (Medeiros et al., 2005). The 
interaction of both land and ocean surfaces with the PBL is a very active area of research, with distinct communi-
ties (land-atmosphere and ocean-atmosphere) and driving science questions (e.g., Santanello et al., 2018 and refs 
therein; Teixeira et al., 2021). Routine measurements of the PBLH are provided via high temporal and vertical 
resolution ground-based measurements, such as radiosonde soundings, commercial aircraft measurements (e.g., 
Aircraft Meteorological Data Relay (AMDAR), Y. Zhang et  al.,  2020), and lidar backscatter/ceilometer. For 
near global coverage, satellite estimates of PBLH can be derived from spaceborne lidar instruments, such as the 
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Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), vertical sounders, such as the 
Atmospheric Infrared Sounder (AIRS), and GPS radio occultation, such as the GPS Occultation Analysis System 
(GOAS) and Global Navigation Satellite System (GNSS). Unfortunately, current spaceborne PBLH estimates 
have significant limitations with vertical or temporal coverage and generally only monthly/seasonally averaged 
products are considered reliable for scientific analysis. There is no single instrument that provides daily global 
coverage of accurate PBLH measurements, which requires these platforms and their retrievals to be used in 
conjunction with atmospheric model simulations and ground-based evaluation to achieve a better understanding 
of PBLH variability.

Current observational platforms have strengths and weaknesses related to spatial coverage and temporal frequency 
of observations and accuracy of the measurements. Spaceborne PBLH measurements are particularly challenging 
in coastal areas given the large horizontal gradients in terrain, surface albedo, and emissivity, along with the 
high likelihood that these gradients lie within a single satellite ground pixel. Ground-based measurements have 
high temporal and vertical resolution but are not able to provide a true global picture. In addition, the ability to 
“resolve” the PBL from satellite is inherently limited as the lower troposphere is the farthest from space and have 
reduced sensitivity to the PBL which can be confounded by clouds and aerosols.

These observational limitations in the PBL present a challenge to the scientific community who are trying to 
better understand its sub-hourly chemical and dynamical traits. The PBL and its depth are directly responsible for 
the temporal, vertical, and spatial scales on which many environmental interactions take place (Figure 1). In situ-
ations where a shallow PBL depth is formed, atmospheric pollutants emitted from the surface are trapped within 
this shallow layer. In contrast, as the PBL depth grows convectively during daytime, pollutants are diluted through 
vertical transport and mixing. Convective mixing of the PBL can also entrain pollutants transported at higher 
altitudes from upwind regions, adding to the budget of boundary layer pollutants. Therefore, to better understand 
coastal AQ science, it is imperative to better understand the controlling factors (e.g., meteorology, atmospheric 
composition and transformation, terrain, emissions, wet and dry deposition) of the coastal environment and how 
they influence and are influenced by changes in the PBL (Crosman & Horel, 2010).

Changes in environmental conditions often occur at varying time scales, ranging from quickly evolving pollution 
events (e.g., J. Zhang et al., 2020) to decadal changes in de/nitrification of bodies of water (e.g., Clune et al., 2021). 
Therefore, many researchers have naturally focused on a specific coastal environmental issue addressed through 
a disciplinary perspective and assumptions. However, the multifaceted impacts of PBL on coastal processes 
demand that current and future observations, simulations/assimilations, and funding opportunities for the Earth 
System shift focus beyond one discipline toward understanding PBL evolution as an integrated and intercon-
nected system.

Figure 1. Conceptual model of the processes impacting the planetary boundary layer at the coastal interface.
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To better meet these interdisciplinary challenges occurring within the PBL, many regional sub-orbital (i.e., 
ground-based, ship-based, and airborne) intensive experiments have been carried out jointly with state and 
federal agencies geared toward improving the lives of their stakeholders (see Table 1). As the AQ community 
enters the era of geostationary satellite observations, coordination of additional campaigns and enhancement of 
existing observing networks (e.g., NASA's Tropospheric Ozone Lidar Network (TOLNet), the Unified Ceilome-
ter Network, NASA's/ESA's Pandonia Global Network (PGN), NASA MicroPulse Lidar NETwork (MPLNET), 
and routine radiosonde/ozonesonde launches) offers an opportunity to quantify PBL dynamics and improve the 
representativeness of spaceborne measurements of PBL processes.

The 2017 National Academies Decadal Survey (Thriving On Our Changing Planet, NASEM, 2018), specifically 
proposed a combination of geostationary and polar orbiting satellites, airborne platforms, and ground-based 
networks to characterize the strong diurnal cycles of PBL processes. Cross-discipline studies and working 
groups have been established to aid in PBL characterization, such as through NASA's PBL Incubation Study 
Report (Teixeira et  al.,  2021; https://science.nasa.gov/science-pink/s3fs-public/atoms/files/NASA_PBL_Incu-
bation_Final_Report_2.pdf). While NASA's Decadal Survey Incubation activities are heavily focused on 
spaceborne applications, a necessary component is incorporating findings and methods from prior sub-orbital 
campaigns, illustrating their advances in PBL science in coastal areas. Here, we synthesize findings from previ-
ous ground-based/airborne campaign measurements to address the interdisciplinary nature of existing research 
questions relevant to PBL processes and requirements of future measurement strategies. Specific questions 
addressed  are:

•  What have we collectively learned from coastal AQ observations and simulations (through field campaign 
efforts or observation networks) that advance our understanding of processes coupled by the PBL? (Section 2)

•  How representative are current and future measurements from space of PBL characteristics and the feedback/
exchange processes impacting AQ? (Section 3)

•  More generally: How are research goals surrounding the land/water interface prime examples of the need to 
increase the interdisciplinary nature of atmospheric scientific research? (Section 4)

Campaign Time period Focus region Reference(S)

1 CBODAQ/DISCOVER-AQ a July 2011 Mid-Atlantic US Goldberg et al. (2014)

2 GoMex/DISCOVER-AQ b September 2013 Gulf of Mexico Kowalewski and Janz (2014)

3 DANCE c July–August 2014 Mid-Atlantic US D. K. Martins et al. (2016)

4 NAAMES d 2015–2018 North Atlantic/Canada Behrenfeld et al. (2019)

5 KORUS-AQ/OC e May–June 2016 Korean Peninsula C. E. Jordan et al. (2021a, 2021b), 
Tzortziou et al. (2018)

6 OWLETS 1–2 f June–July 2017–2018 Mid-Atlantic US Sullivan et al. (2019), Dreessen 
et al. (2023),

7 LMOS g May–June 2017 Lake Michigan Stanier et al. (2021)

8 LISTOS h June–September 2018 NYC/Long Island Sound Karambelas (2020)

9 SCOAPE i May 2019 Louisiana/GOM Thompson et al. (2020, 2023)

10 TRACER-AQ j September 2021 Houston/GOM Jensen et al. (2022), Judd 
et al. (2021)

 aGEO-CAPE Chesapeake Bay Oceanographic campaign with DISCOVER-AQ (Baltimore, MD/Washington D.C. 2011 Deployment); https://earth.gsfc.nasa.gov/ocean/
campaigns/geo-cape-chesapeake-bay-oceanographic-campaign-discover-aq-cbodaq.  bGulf of Mexico field campaign/Deriving Information on Surface conditions 
from Column and Vertically Resolved Observations Relevant to Air Quality (Houston, TX 2013 Deployment); https://www-air.larc.nasa.gov/missions/discover-aq/
discover-aq.html.  cDeposition of Atmospheric Nitrogen to Coastal Ecosystems experiment; https://sites.psu.edu/dance2014/.  dNorth Atlantic Aerosol and Marine 
Ecosystem Study; https://science.larc.nasa.gov/NAAMES/.  eKorea-United States Ocean Color experiment; https://www-air.larc.nasa.gov/missions/korus-aq/.  fOzone 
Water-Land Environmental Transition Study; https://www-air.larc.nasa.gov/missions/owlets/.  gLake Michigan Ozone Study; https://www-air.larc.nasa.gov/missions/
lmos/.  hLong Island Sound Tropospheric Ozone Study; https://www-air.larc.nasa.gov/missions/listos/index.html.  iSatellite Coastal and Oceanic Atmospheric Pollution 
Experiment; https://www-air.larc.nasa.gov/missions/scoape/index.html.  jTracking Aerosol Convection Interactions Experiment—Air Quality; https://www-air.larc.
nasa.gov/missions/tracer-aq/.

Table 1 
A Summary of Various Collaboratively Supported Field Campaigns, Primarily in the U.S. and North America, Examining Air and Water Quality Near the Coastal 
Interface
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In this paper, our primary focus is on the complexities of the coastal PBL and 
the impact they have on AQ, deposition of pollutants, and coastal ecological 
processes. Our goals are to provide more context and insight on the above 
questions. This is accomplished by defining important land/water feedback 
processes in the PBL, discussing measurement strategies employed to better 
understand these processes, and identifying critical measurement gaps of 
PBL characteristics that must be addressed to answer important interdisci-
plinary science questions.

2. Lessons From Recent Coastal Field Campaigns
2.1. Summary of Recent Campaigns

The coastal PBL facilitates interactions between anthropogenic and biogenic 
pollutants (both their sources and sinks) that contribute to poor AQ (as 
illustrated in Figure  1). We draw from past NASA and partnering organi-
zation supported field campaigns (listed in Table 1 and shown on Figure 2) 
that sought to address some of the scientific questions listed above. These 
campaigns took place generally in summertime in and near various bodies of 
water within the United States since 2011. An exception is the KORUS-OC 
(Korea-U.S. Ocean Color experiment) that occurred in coastal waters 

surrounding the Korean peninsula in 2016 (C. E. Jordan et al., 2021a, 2021b; Thompson et al., 2019; Tzortziou 
et al., 2018). KORUS-OC is instructive because it combined air and water quality measurements from research 
vessels in conjunction with the comprehensive KORUS-AQ (Korea-U.S. Air quality) campaign that used obser-
vations from aircraft, ground sites, and satellites (Crawford et al., 2021). Measurements during KORUS OC/AQ 
were used to examine transport of atmospheric pollutants, including urban nitrogen pollution, over the coastal 
ocean and their impacts on atmospheric correction of satellite ocean color and retrievals of coastal ecological 
processes. The coordinated KORUS OC/AQ fieldwork program is an excellent model for future interdiscipli-
nary land/water interface science. For example, Tzortziou et al.  (2018) measured total column NO2 (TCNO2) 
and O3 (TCO3) over coastal waters around the Korean peninsula using shipborne Pandora instruments as part 
of KORUS-OC. These observations were integrated with KORUS-AQ observations and data products such as 
ground-based observations at coastal land sites, synoptic satellite imagery, and air mass trajectory simulations. 
They reported that variability in TCO3 over the coastal ocean was relatively small (20%) and mostly exhibited 
a quasi bi-weekly oscillation driven primarily by larger scale meteorological processes and synoptic weather 
fronts that were captured successfully by AURA-OMI. TCNO2, however, exhibited small-scale and short-term 
variability by more than an order of magnitude, linked to urban nitrogen pollution. If not properly accounted for 
in atmospheric correction retrievals of coastal ocean color, such variability in coastal atmospheric composition 
will result in a false spatial or temporal variability in ocean biogeochemical properties and ecological processes.

The U.S.-based campaigns have focused on the Mid-Atlantic and North Atlantic Ocean (see Table 1 for acro-
nyms; DISCOVER-AQ, CBODAQ, DANCE, NAAMES, OWLETS, LISTOS), Gulf of Mexico (DISCOVER-AQ, 
GoMex, SCOAPE, TRACER-AQ), and Lake Michigan (LMOS). These areas were targeted primarily because of 
their proximity to non-attainment regions for the U.S. EPA's National Ambient Air Quality Standard (NAAQS) 
for ozone (https://www.epa.gov/green-book), and the abundance of local anthropogenic emissions (NO2 and 
ozone non-attainment areas shown on Figure 2). Our focus is primarily on the U.S. and North America given that 
there are several upcoming polar-orbiting and geostationary satellite missions targeting this region that will aid 
our understanding of the coastal PBL.

2.2. Characterizing Processes Driving PBLH Evolution

Most recent coastal AQ-focused campaigns (Table 1) highlighted examples of differential heating between the 
land and water, which impacts the PBL in specific ways that are more complex than traditional continental 
regions. This gradient affects the height or mixing depth of the PBL and causes winds to stagnate or reverse 
flow directions during the daytime or transitional periods, such as sunrise or sunset. Differential surface heating 
and cooling between land and water can also lead to a gradient in PBL depth at the coastline resulting in large 

Figure 2. OMI version 4 tropospheric column NO2 average in Dobson Units 
(DU) for 2019 (https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/
L3/OMNO2d_HR/OMNO2d_HRM/). Locations of campaigns listed in 
Table 1 (except KORUS-OC; 5) are shown. Black outlined regions indicate 
current U.S. EPA-designated Ozone Non-Attainment Areas based on the 2015 
National Ambient Air Quality Standards (NAAQS; https://www.epa.gov/
green-book/green-book-gis-download; Last Updated 1 February 2022).

https://www.epa.gov/green-book
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2d_HR/OMNO2d_HRM/
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2d_HR/OMNO2d_HRM/
https://www.epa.gov/green-book/green-book-gis-download
https://www.epa.gov/green-book/green-book-gis-download


Earth’s Future

SULLIVAN ET AL.

10.1029/2023EF003535

5 of 14

gradients in cloud coverage, air pollution concentrations, and dry deposition (Dreessen et al., 2023; Goldberg 
et al., 2014; Loughner et al., 2016; Mazzuca et al., 2019; Stauffer & Thompson, 2015; Sullivan et al., 2019).

Under weak synoptic scale forcings, differential surface heating or cooling between the land and water can lead to 
localized circulation patterns, such as sea, bay, or lake breezes (Miller et al., 2003). Stagnation in the wind and a 
flow reversal associated with localized onshore or offshore breezes confines fresh emissions (Dacic et al., 2020; 
Kotsakis et al., 2022; Loughner et al., 2011, 2014; Stauffer et al., 2015) and the accumulation of pollutants that 
would otherwise be transported beyond the urban region. These conditions contribute to ozone non-attainment 
(see Figure 2) designations, whether in populated U.S. coastal areas, such as the Gulf Coast (e.g., Houston, New 
Orleans), the Chesapeake Bay, Lake Michigan, and Long Island Sound regions (Goldberg et al., 2014; Loughner 
et al., 2014; Nauth, 2021; Stauffer et al., 2015), or in coastal megacities worldwide, such as Seoul (Peterson 
et al., 2019). Such meteorological conditions near New York City were characterized by particularly low-speed 
southerly/westerly winds and were previously shown to drive high NO2 pollution episodes even under extreme 
reductions in emissions from the transportation sector during the COVID-19 pandemic (Tzortziou et al., 2022). 
Furthermore, in many occurrences a stable PBL leads to fair weather cumulus clouds at the top of the PBL over 
land but not over water causing contrasting chemical processing regimes (i.e., increased ozone production effi-
ciency over water) that may occur directly in the shallow PBL (often 20–60 m AGL) within the marine environ-
ment versus those in a traditional land environment that have much deeper PBL depths (illustrated in Figure 1).

2.3. Campaign Example in the Chesapeake Bay (OWLETS-2)

Figure 3 illustrates the complexity of land/water PBL gradients that lead to differing vertical distributions of 
pollutants. During the Chesapeake Bay region 2018 OWLETS-2 campaign (Table 1), three ozonesondes were 
launched within minutes of each other at three locations: within the Chesapeake Bay (Hart Miller Island; HMI), 
near Baltimore (University of Maryland Baltimore County; UMBC), and farther inland (Howard University 

Figure 3. Coincident ozonesonde profiles from 1 July 2018 during the OWLETS-2 campaign in the northern Chesapeake Bay region. (a) Ozone mixing ratio (thick, 
solid lines) and (b) Wind direction profiles up to 3 km AMSL. The three ozonesondes were launched within minutes of each other (1715 UTC; 1215 LST). The map (c) 
shows the locations of the three ozonesonde launch locations using the same color scheme as the vertical profiles. Note HMI is 30 km due east of UMBC and HUBV is 
26 km SW of UMBC. Time series of ozone lidar profiles at (d) UMBC and (e) HMI are also shown with an overlay of ozonesonde profiles (blue/green triangles) and 
surface ozone analyzer data (bottom).
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Beltsville Campus; HUBV). Time series of ozone lidar profiles at (d) UMBC and (e) HMI are shown with an 
overlay of ozonesonde profiles (blue/green triangles corresponding to the ozonesonde color) and surface ozone 
analyzer data.

The ozone sonde profiles represent a “local snapshot” of the gradients in near-surface ozone pollution, vertical 
stability, and vertical wind profiles that are often present in coastal regions during the summer (Thompson and 
Herman, 2019). Ozone lidar observations (Sullivan et al., 2014) (Figure 3d/3e, dashed black box) further illustrate 
the challenges of coastal AQ as it relates to the PBLH conceptual model in Figure 1. Both sites observe synoptic 
subsidence of long-range transport of increased ozone concentrations above 2 km AGL and have deep nocturnal 
residual layers that are entrained into the next day's PBL (sunrise is near 0600 LT and sunset is near 2030 LT on 
these days). Both ozonesondes and lidar profiles indicate the aloft ozone peak over HMI at ∼1 km AGL is from 
the return flow of the bay breeze, which was also observed during the DISCOVER-AQ field campaign occurring 
in the same region (Loughner et al., 2014; Stauffer et al., 2015). Vertical stability was much greater over HMI, 
limiting the vertical mixing of the ozone pollution near the surface and the elevated layer at ∼1 km. Lack of 
vertical mixing over water, or capping surface emissions in the lowest ∼200 m AGL, indicates a critical need for 
understanding emissions over the water that are contributing to coastal AQ issues.

Figure 3 is representative of a real-world example illustrating the difficulties of quantifying land/water atmos-
pheric gradients close to the surface. Accurate measurements from satellite instruments are challenging on this 
scale, if not impossible, due to the coarse satellite spatial resolution that results in mixed land-water pixels and 
significant land-water adjacency effects. Surface ozone (Figure 3a) is nearly 30 ppbv greater over the water site 
(HMI) compared to the land-based locations during the ozonesonde launch, indicating a different photochem-
ical regime than over land (where the surface values of ozone generally appear to be representative of the PBL 
estimate). However, these enhanced measurements make it possible to understand the pollution aloft more fully 
and evaluate transport patterns that would not have been measured in a traditional routine monitoring capacity. 
Ground-based networks of observing platforms, particularly during intensive campaign-based operations, are 
requisite to the understanding and evaluating the coastal PBLH and its exchange processes.

3. Representativeness of Satellite Measurements in Coastal Regions
Noting the ozone NAAQS non-attainment areas on Figure 2, we cannot currently measure PBL ozone from space 
at desired accuracy or precision from low Earth orbit satellites. However, commonly retrieved satellite quantities 
(below) serve as proxies for the spatial extent of coastal pollution. They illustrate successes and challenges for 
coastal measurements and are expected to benefit from upcoming geostationary satellite products.

3.1. Satellite Measurements of PBLH

Estimates of the PBLH have been obtained directly from space and select detection methods are briefly summa-
rized below for active sensing using elastic lidar and passive infrared sounding. In the literature there are many 
examples of estimates of PBLH from space-based systems that are used to better understand the seasonality of 
PBLH (e.g., McGrath-Spangler & Denning, 2012; Su et al., 2017) and evaluate regional and global model simu-
lations of PBL (Hegarty et al., 2018; N. S. Jordan et al., 2010). GPS Radio Occultation (Ao et al., 2012; Kalmus 
et al., 2022) and passive infrared sounders, such as AIRS (Ding et al., 2021; J. P. A. Martins et al., 2010), are 
able to retrieve coarse PBLH estimates with horizontal (∼2° × 2°–50 km × 50 km) and vertical (1–2 km) reso-
lution based on atmospheric (e.g., temperature, moisture, or refractivity) gradients near the PBLH (Gettelman 
et al., 2004; Thrastarson et al., 2020) in coastal or other complex domains.

Under well-mixed (e.g., convective) PBL conditions, spaceborne lidars, such as the Cloud-Aerosol Transport 
System (CATS; Yorks et al., 2016), ICESat-2 (Markus et al., 2017), and CALIPSO (W. Zhang et al., 2016) are 
able to quantify daytime and nighttime PBLH with high vertical (30–100 m) precision using gradients in total 
(L1) or aerosol (L2) attenuated backscatter within a certain threshold as proxy for the PBLH. This retrieval is 
based on the assumption that the PBLH is located at the transition from the polluted PBL to the relatively less 
aerosol-laden air above the PBL However, in less idealized conditions (especially when stable stratification has 
developed below and above the thermodynamic PBLH), using attenuated backscatter presents a challenge to 
correctly interpret and algorithmically quantify (such as the wavelet covariance technique employed in Compton 
et al., 2013) an accurate PBLH. Furthermore, spaceborne lidars such as CALIPSO only visit within 10 km of 
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a specific ground pixel on average twice every 16 days (and one of these overpasses is in the nighttime hours), 
making the data set challenging to evaluate diurnal PBLH cycles in the coastal environment.

In summary, current spaceborne PBLH measurements provide either high-resolution vertical sampling with poor 
horizontal/temporal coverage, or near-once-daily global afternoon coverage with lower spatial resolution and accu-
racy. Although space-based datasets provide context for seasonality of the PBLH, which is important for global 
modeling and understanding long term climate trends, there are currently no spaceborne platforms that provide 
temporal or spatial PBL coverage beyond twice per day, much less at the horizontal spatial scales of a few km and 
vertical scales of ∼30–100 m necessary for coastal areas. Furthermore, many of these platforms rely on the assump-
tion of a strong gradient in a signal only at the top of the PBL and are likely unable to resolve mixed layering at multi-
ple heights, especially layering that is above or within the PBL. Note that several groups are employing machine 
learning to identify where the PBL top is most likely located and to resolve the PBLH in areas of atmospheric stratifi-
cation (Palm et al., 2021; Sleeman et al., 2020). Other investigations are using current  and future low Earth orbit and 
geostationary passive sensors geared toward understanding the underlying atmospheric chemistry and dynamics of 
that impact PBLH retrievals in coastal regions (Loría-Salazar et al., 2021; Turner & Ulrich, 2021; Wang et al., 2021). 
Current research supported by NASA's PBL Decadal Survey Incubation program includes multi-sensor retrieval 
(passive and active) to take advantage of the combined capabilities and to integrate ground and spaceborne PBLH 
profiles into regional/global modeling data assimilation systems. There are challenges in validating novel retrievals; 
for example, high spatial and temporal resolution AQ models show sharp gradients in air pollution concentrations 
and nitrogen deposition near coastlines, but there is a lack of observations to evaluate these findings (Abdi-Oskouei 
et al., 2020; Loughner et al., 2016). Field data from US ozone NAAQS non-attainment areas (Figure 2), are still rela-
tively sporadic, of limited duration (1–2 months); coastal PBL information is particularly lacking on deployments.

3.2. Satellite Measurements of PBL Air Quality

Satellite measurements of tropospheric and total column amounts of nitrogen dioxide (NO2, Figure  2) have 
become increasingly accurate over the past two decades with improvements to retrieval algorithms from instru-
ments like the GOME (Global Ozone Monitoring Experiment) series, Ozone Monitoring Instrument (OMI) and 
the higher spatial resolution TROPOspheric Monitoring Instrument (TROPOMI). However, relating the column 
amounts of pollutants to “nose-level” or PBL concentrations, especially in coastal regions, remains a challenge 
due to the complexities of vertical distribution and often strong spatial and temporal variability in surface (land or 
ocean) reflectivity (Knepp et al., 2015; Kollonige et al., 2018; Szykman et al., 2019; Thompson et al., 2019, 2023; 
Tzortziou et al., 2015, 2018). However, continued work is moving toward evaluating and utilizing these satellite 
derived NO2 products to the neighborhood scale (Demetillo et al., 2021; Dressel et al., 2022; Goldberg et al., 2021; 
Johnson et al., 2022; Judd et al., 2020) to better evaluate urban pollution and human health (Anenberg et al., 2022).

Wet and dry atmospheric nitrogen deposition are major contributors of excess nitrogen (N) to coastal waters and 
ecosystems (Cornell et al., 2003; Kanakidou et al., 2016). Excessive reactive Nitrogen deposition (both wet and 
dry) can cause a series of negative effects on ecosystem health, biodiversity, soil, and water and has been summa-
rized in a recent review by Liu et al., 2020. Methods have been established to estimate global NO2 dry deposition 
fluxes at high spatial resolution using the combination of satellite measurements and high resolution chemical 
transport models (Geddes and Martin., 2017; Nowlan et al., 2014), but continue to be particularly challenging to 
correctly measure near coastal urban megacities or in instances of aged pollution transport (Kharol et al., 2018). In 
polluted coastal urban regions, excess N inputs from the atmosphere or land to adjacent aquatic systems may lead to 
eutrophication, recurrent algal blooms, and subsequent development of oxygen-depleted dead zones, such as those 
found almost every year in many heavily urbanized coasts and estuaries, for example, Gulf of Mexico, Chesapeake 
Bay, and Long Island Sound (Anderson & Taylor, 2001; Loughner et al., 2016; Murphy et al., 2011; Rabalais 
et al., 2001). Incorporated into vegetation directly through the leaves and indirectly through the soil, N deposition 
is also an important nutrient source for terrestrial plants and can affect biogeochemical and ecological processes 
across the continuum of terrestrial-aquatic ecosystems from upland forests to coastal wetlands (Morris, 1991).

3.3. Satellite Measurements of Ocean Color

Remotely-sensed ocean color observations suggest that coastal PBL dynamics and AQ have profound effects on 
coastal water quality, aquatic ecosystems, and productivity. Over the past 20+ years, continuous measurements of 
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ocean color from polar orbiting satellites in low Earth orbit have quantified ocean biogeochemical cycles, ecolog-
ical processes and their responses to climatic disturbances on a global scale (Werdell et al., 2018). Measurements 
are supplied by multi- and hyperspectral ocean color instruments, such as the NASA Sea-viewing Wide Field 
of View Sensor (SeaWiFS; 1997–2010), NASA's Moderate Resolution Imaging Spectroradiometers on Terra 
(MODIST; 1999–present) and Aqua (MODISA; 2002–present), ESA's Medium Resolution Imaging Spectrome-
ter (MERIS; 2002–2012), the NASA-NOAA Suomi National Polar-orbiting Partnership Visible Infrared Imaging 
Radiometer Suite (VIIRS; 2012–present), ESA's Ocean and Land Color Instrument (OLCI; 2016–present), the 
Hyperspectral Imager for the Coastal Ocean (HICO, 2009–2014) and are expected from the upcoming Plankton, 
Aerosol, Cloud, ocean Ecosystem (PACE) mission. Measurements from regional geostationary sensors, such as 
the Geostationary Ocean Color Imager (GOCI mission, 2010–present, covering East Asia) provide unique infor-
mation on highly dynamic physical processes and biogeochemical exchanges occurring in coastal waters. Note 
that reducing uncertainties for ocean properties through atmospheric correction of polar-orbiting and geostation-
ary satellite data relies on knowing vertical and column amounts of aerosols and trace gases like ozone and NO2 
that may vary considerably across the land-water interface (Ahmad et al., 2007; Tzortziou et al., 2014).

A multi-satellite approach (for simultaneous retrievals of spatiotemporal variability in coastal atmospheric 
composition and ocean color) is thus required to obtain highest quality measurements of ocean biogeochemical 
properties. This fusion of multi-sensor data in turn will aid atmospheric retrievals because accurate aerosol and 
trace gas measurements are based on accurate knowledge of ocean surface reflectivity. Future measurements 
from upcoming ocean color hyperspectral (e.g., 2-nm to 5-nm spectral resolution) imagers, such as PACE and 
Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) may provide an opportunity to directly 
retrieve NO2 over the ocean for both aquatic and atmospheric applications (Joiner et al., 2022). At present with 
only polar-orbiting satellites observing most of the globe (GOCI and GEMS over east Asia are exceptions) the 
inability to capture diurnal changes in atmospheric composition leads to uncertainties in non-coincident ocean 
color data. It is expected that being able to combine geostationary atmospheric and ocean color sensors TEMPO 
(Tropospheric Emissions: Monitoring of Pollution) and GLIMR over North America will provide an unprec-
edented opportunity to monitor the highly dynamic atmospheric and ocean processes along coastlines and to 
resolve important issues about PBL dynamics.

4. Summarizing Community Needs to Improve Coastal Air Quality Science
Recent coastal field campaign efforts listed in Table 1 have been funded and carried out in different ways depend-
ing on specific mission goals. However, several questions—of direct interest to coastal resource managers as 
well as scientists—remain in our understanding of the PBL and AQ in coastal environments. In summarizing the 
campaign efforts listed in Table 1 and satellite limitations, we recognize three areas of interdisciplinary research 
that are urgently needed to better understand the coupled PBL interactions.

1.  Improve fundamental understanding of the diurnal PBL cycle as it relates to recirculation and entrainment 
of nocturnal residual and long-range transport layers as they enter the coastal urban region. The campaigns 
broadly indicate that episodes where aloft layers or recirculation patterns persisted were the days generally 
driving exceedances of the ozone NAAQS. These features have occurred in several coastal regions (Table 1) 
as described for Long Island Sound (Rogers et al., 2020; Torres-Vazquez et al., 2022; Wu et al., 2021) and the 
Chesapeake Bay (Bernier et al., 2022; Dreessen et al., 2016; Kotsakis et al., 2022; Sullivan et al., 2017, 2019; 
Tao et al., 2022; Yang, Demoz, Delgado, Sullivan, et al., 2022, Yang, Demoz, Delgado, Tangborn, et al., 2022).

2.  Quantify chemical perturbations from offshore transport of urban emissions, ships, boats (both commercial 
and personal/recreational) and offshore oil and gas drill sites, as they interact with the onset of a bay/sea breeze 
in the shallow marine boundary layer. Without accurate over/near water emissions, chemical transport models 
are not capable of simulating current and future regulatory scenarios (Sorte et  al.,  2020). Understanding 
these non-traditional emission sources will require the combination of satellite estimates and evaluations from 
sub-orbital campaign data sets. Preliminary studies reaching similar conclusions were documented in the 
Chesapeake Bay region (Caicedo et al., 2021; Gronoff et al., 2019; Ring et al., 2018), the South Korean coast 
waters (Thompson et al., 2019; Tzortziou et al., 2018), the Gulf of Mexico (Thompson et al., 2023), the Lake 
Michigan region (Vermeuel et al., 2019) and along the New York City coast (Nauth et al., 2023; Tzortziou 
et al., 2022).

3.  Identify novel and viable pathways derived from the interaction of the land-ocean-atmosphere that can drive 
PBL content and structure in coastal communities. For example, describes aquatic vegetation contributing 
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to biogenic emissions that can produce pollution. Qin et al., 2019 demonstrates the importance of including 
a full inventory of biogenic emissions in modeling of coastal regions along the Great Lakes during LMOS 
(Table 1, 7). A recent review of how aquatic emissions can travel long distances to degrade AQ downstream 
appears in Lee et al. (2020).

The KORUS-OC/AQ campaign (see Crawford et  al.,  2021; C. E. Jordan et  al.,  2021a, 2021b; Thompson 
et al., 2019; Tzortziou et al., 2018) provides a model for future campaigns to examine both air and water qual-
ity issues at the coastal interface. Coincident intensive measurements of air pollution and water properties will 
advance our understanding of the feedbacks noted above that govern air/water exchange processes. Details on 
interdisciplinary topics needing more exploration are described in the NASA's Geostationary Coastal and Air 
Pollution Events report (GEOCAPE, https://geo-cape.larc.nasa.gov/wp-content/uploads/sites/142/2020/12/
GEO-CAPE_2018_Final_Report.pdf), with further details in the GEO-CAPE Interdisciplinary Science White 
Paper (https://geo-cape.larc.nasa.gov/wp-content/uploads/sites/142/2022/08/2022-08-29-Integrating-Coastal-
Earth-System-Science-across-Marine_19Jan.pdf).

The GEO-CAPE science team prioritized several interdisciplinary foci areas, with the most relevant being to 
form a better understanding of influences of meteorology on coastal waters and vice versa with the (a) role of 
coastal waters in land/sea breeze dynamics affecting transport and processing of atmospheric constituents and 
(b) changes in PBLH over estuarine and coastal waters with respect to that over their adjacent land masses and 
the subsequent effects on vertical distribution, transport, processing, and deposition of atmospheric constituents. 
Further examples of these that have not been explored or previously discussed include quantifying oil slicks in 
bodies of water and investigating the development and impacts of red tides and other algal blooms.

The 2017 Decadal Survey (NASEM, 2018) explicitly requested a satellite platform that could adequately resolve 
the large spatial variation of aerosol and trace gas concentrations (partly due to surface heterogeneities, such 
as urban-rural or land-water contrast), at a horizontal resolution of 5 km and a temporal resolution of every 
2–3 hr. Therefore, the next generation of satellites needs to adopt new multi-sensor constellations with innovative 
deployment of small instruments or cubesats that can nimbly measure AQ in coastal environments along with 
ground-based systems used in prior field campaigns. Ground-based remote sensing and balloon-borne observa-
tions will continue to be vital to both evaluate the geo-stationary a priori models (Johnson et al., 2018) and to 
observe the fine spatial and temporal scales needed to understand coastal AQ within the PBL.

Launched over the next decade, geostationary sensors from the U.S. (TEMPO, GLIMR, and NOAA's Geosta-
tionary Extended Observations (GeoXO)), Europe (Sentinel 4), and SE Asia (GEMS and GOCI-II already in 
orbit) can form a northern hemisphere GEO constellation for studies of processes and exchanges across the 
land, ocean and atmosphere in complex coastal systems. Since these platforms will not have a dedicated PBL 
measurement onboard, the required approaches to improve our coastal PBL and AQ understanding remain: a 
dedicated sub-orbital airborne measurement suite to consistently resolve coastal PBL heights in a regional coastal 
domain where high resolution (<1 km) chemical transport model output can be confidently simulated. This is 
further enhanced with ground-based lidar/ceilometer, spectrometer/spectroradiometer, sun photometer, balloon, 
and in-situ measurements, particularly during intensive campaign-based operations. The combination of these 
suborbital observations (which are a fraction of the cost of any satellite program) can then continually validate 
existing satellite measurements and provide feedback to algorithm teams working on novel techniques, such as 
machine learning-based and multi-sensor (e.g., active + passive) PBL retrievals.

5. Conclusions
We described important land/water feedback processes in the PBL, discussed measurement strategies to better 
understand these processes, and identified critical measurement gaps of PBL characteristics that must be addressed 
to fully characterize the interaction of AQ, physical and biological processes along the coast. For the first time, 
we have summarized scientific consensus from analyses during coastal AQ campaigns (Table 1) and these results 
have been used to highlight the complexities of real-world PBL measurements over the water (Figure 3).

Continental air pollution emission sources are generally well-known (e.g., transportation, industry, and biogenic) 
but characterizing their downstream effects on water quality where PBL dynamics are complex remains a chal-
lenge. Most coastal areas observe large differences in model projections of air pollution compared to observa-
tions, which prevents policymakers from designing sound implementation plans for improving coastal air and 

https://geo-cape.larc.nasa.gov/wp-content/uploads/sites/142/2020/12/GEO-CAPE_2018_Final_Report.pdf
https://geo-cape.larc.nasa.gov/wp-content/uploads/sites/142/2020/12/GEO-CAPE_2018_Final_Report.pdf
https://geo-cape.larc.nasa.gov/wp-content/uploads/sites/142/2022/08/2022-08-29-Integrating-Coastal-Earth-System-Science-across-Marine_19Jan.pdf
https://geo-cape.larc.nasa.gov/wp-content/uploads/sites/142/2022/08/2022-08-29-Integrating-Coastal-Earth-System-Science-across-Marine_19Jan.pdf
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water quality. A community driven design for future generations of spaceborne measurements, model simu-
lations, and Earth System science will produce effective regulatory mitigation efforts, enhance environmental 
justice, and improve public health. However, this will only be accomplished with the combination of interdisci-
plinary research support and consistent/routine suborbital observations.

Data Availability Statement
OMI version 4 tropospheric NO2 averages can be downloaded from the NASA Goddard Space Flight Center Aura 
Validation Data Center (Krotkov et al., 2019). Data for US EPA Non-Attainment Areas for criteria pollutants 
can be accessed at https://www.epa.gov/green-book/green-book-gis-download (US Environmental Protection 
Agency, 2023). The tropospheric ozone lidar used from NASA's Tropospheric Ozone Lidar Network (TOLNet) 
and are publicly available (https://www-air.larc.nasa.gov/cgi-bin/ArcView.1/TOLNet?NASA-GSFC=1, 
Newchurch et al., 2016). The ozonesonde data used in this publication were obtained as part of the OWLETS-2 
campaign and are publicly available (https://www-air.larc.nasa.gov/missions/owlets, following procedures docu-
mented in Thompson et al., 2019).
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